Significant figures

- Simplified model for estimating uncertainty both in a measurement & a Calculation.
- Tells how many of the digits in a measurement are important to the measurement or the Calculation result. Tells where the uncertainty lies.
 - It's all about the zero's Sometimes zeros are part of measurement & Sometimes they are just placeholders for value.

1 Rules Zeros that are placeholders for value are not Significant (A value written in proper Scientific notation -all digits are significant - there are no placeholders in Scientific Notation)

Standard Rules

- All non-zero digits are Significant 1.732 m 4 sig Figs 3.71 ft 3 sig figs 4,562 L 4 sig figs
- Any zero between non zero digits is Significant (Captive zeros) 1.02 ml 3 7003.1 gal 5 10.023 ft 5
 - A zero to the left of non-zero is a Poceholder & is not Significant. -leading zeros $0.003ZIS = 3.2I \times 10^{3} \text{ s}$ $6.064 \text{ mL} = 6.4 \times 10^{2} \text{ mL}$ 2 $0.00007 \text{ in} = 7 \times 10^{5} \text{ in}$ $0.03026 \text{ J} = 3.026 \times 10^{2} \text{ J}$

Accuracy vs. precision

le measurments all 4 agree à on target - Measurements agree with each other - precise - measurements Close to

actual value - Accurate

le measurments all agree but off - precise

- not accurate

6 measurments all off but average to Correct value

- not precise

decimal form Scientific not. Sig Figs
13,000
$$1.3 \times 10^4$$
 Z
 1.30×10^4 3
 1.300×10^4 4
 1.3000×10^4 5

Examples	sci not	SF
6.00620	-3 6-20 × 10	3
10.02	1.002 × 10	4
3.6007	3.6007 ×10	5
1390	1.39 × 10	3
1620.0	3 1.6200 ×10	5
1200	1.2 × 10	2
1200.	1.200 x10	4
1.6900 × 10		5

Rules for Sig figs in Wult & Dix Round the answer to the smallest # of Sig Figs $\frac{3}{1.62 \text{ m} \times 3.2 \text{ m}} = 5.184 \text{ m}^2$ $= 5.2 \text{ m}^2$

4

$$136.1 \text{m} \times 5\text{m} = 480.5 \text{m}^2$$

 700m^2 Isf
 $7\times10 \text{m}^2$