Lab Activity \#1 Math \& the Calculator
Recap
Two types of numbers

- measured has uncertainty in value
- Exact have no uncertainty * Definitions

Equalities $1 \mathrm{ft}=12 \mathrm{in}$

$$
1 \mathrm{~m}=100 \mathrm{~cm}
$$

* Counted values
whee number values that Cannot be divided into fractions
- Uncertainty estimation in calculations system for estimating uncertainty m a calculation result is called significant figures (Significant Digits)

Significant figures

- Simplified model for estimating uncertainty both in a measurement \& a Calculation.
- Tells how many of the digits in a measurement are important to the measurement or the calculation result. Tells where the uncertainty lies.
- It's all about the zeros

Sometimes zeros are part of measurement \& Sometimes they are just placeholders for value.

1 Rule
Zeros that are placeholders for value are not Significant
(A value written in proper scientific notation

- all digits are significant
- there are no placeholders in scientific notation)

Standard Rules

- All non-zero digits are Significant

$$
\begin{aligned}
& 1.732 \mathrm{~m} \\
& 3.71 \mathrm{ft} \\
& 4,562 \mathrm{~L} \text { Ligigs } \\
& 3 \text { sig figs } \\
& 4 \text { sig figs }
\end{aligned}
$$

- Any zero between nonzero digits is significant (Captive zeros)
1.02 mL

7003.1 gal 5
10.023 ft 5
- A zero to the left of non-zero is a placeholder \& is not significant.

$$
\begin{aligned}
& \text {-leading zeros } \\
& \underline{0} .00321 \mathrm{~s}=3.21 \times 10^{-3} \mathrm{~s} \frac{\text { Sig figs }}{3} \\
& \underline{0} . \underline{0} 64 \mathrm{~mL}=6.4 \times 10^{-2} \mathrm{~mL} \\
& \underline{0} .00007 \text { in }=7 \times 10^{-5} \mathrm{in} 1 \\
& \underline{0} . \underline{0} \underline{0} 26 \mathrm{~J}=3.026 \times 10^{-2} \mathrm{~J} 4
\end{aligned}
$$

- A zero to the right of the decimal \& to the right of non-zeros is Significant \&part of the measurement
-Trailing Zeros

7.600 m
Significant figures

4
what happens if zeros removed?
$7.600 \times 10^{\circ} \rightarrow 7.6 \times 10^{\circ}$ Because the value does not change
$1.000 \times 10 \rightarrow 1 \times 10^{2}$ by removing there
$3.06200 \times 10^{\circ} \rightarrow 3.062 \times 10^{1}$
zeros, they were only included because they were part of the measurment

Acevacy vi. Precision

6 meassments all agree it on target

- measurements agree with each other - precise
- measurements close to actual value - Accurate

4 measurments all agree but off

- precise
- not accurate
- not precise
- but accurate
- Zeros to the left of the decimal a to the right of non-zero values.
- These are placeholder zero's

$$
\begin{aligned}
& 13,000 \mathrm{ft}=1.3 \times 10^{4} \mathrm{ft} \\
& 2,160 \mathrm{~m}=2.16 \times 10^{3} \mathrm{~m} \\
& 2 \\
& 760,000 \mathrm{~km}=7.6 \times 10^{5} \mathrm{~km} \quad 2
\end{aligned}
$$

$$
\begin{aligned}
& 13,000 \underset{\substack{\text { Significant to to }}}{ } 13 \quad 13,000 \mathrm{vs} 13 \begin{array}{c}
\text { not the } \\
\text { same } \\
\text { valve }
\end{array} \\
& 1.6200 \rightarrow 1.62 \rightarrow 1.6200 \mathrm{vs} 1.62 \\
& \text { Significant } \\
& \text { to the precision }
\end{aligned}
$$

decimal form

$$
13,000
$$

scientific not.

$$
\begin{array}{ll}
1.3 \times 10^{4} & 2 \\
1.30 \times 10^{4} & 3 \\
1.300 \times 10^{t} & 4 \\
1.3000 \times 10^{4} & 5
\end{array}
$$

Textbook
13,000 placeholders \& 2 sigfigs

$$
13,000 . \quad 5 \text { sig figs }
$$

\uparrow
treat as non-zero
if you want 3 or 4 sig figs use seinot.

$$
\begin{array}{ll}
1.30 \times 10^{4} & 3 \mathrm{sf} \\
1.300 \times 10^{4} & 4 \mathrm{sf}
\end{array}
$$

Examples	Sci not	$\frac{S F}{3}$
0.00620	6.20×10^{-3}	3
10.02	1.002×10^{1}	4
3.6007	3.6007×10^{0}	5
1390	1.39×10^{3}	3
1620.0	1.6200×10^{3}	5
1200	1.2×10^{3}	2
$1200 \uparrow$	1.200×10^{3}	4
1.6900×10^{3}		5

leading placeholder x
 placeholders placeholder x

Rules for sigfigs in ult d Dix
Round the answer to the smallest \# of Sig figs

$$
\begin{aligned}
1.6^{3} \mathrm{~m} \times 3.2 \mathrm{~m} & =5.184 \mathrm{~m}^{2} \\
& =5.2 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{10.72 \mathrm{~m} \times 15.6 \mathrm{~m}}{3.1 \mathrm{~m}} & =53.9458064516 \mathrm{~m} \\
\underline{2} & =54 \mathrm{~m}
\end{aligned}
$$

Add \& Subtraction Rule

$$
\begin{aligned}
& 0.1620 \mathrm{~m} \pm 0.0001 \quad \text { ts } \\
& \Longrightarrow 10.62 \mathrm{~m} \quad \pm 0.01 \text { least precise } 45 \mathrm{f} \\
& +\frac{3.102}{13.8840} \mathrm{~m} \pm 0.001 \mathrm{mf} \\
& 13.88 r \quad 4 \mathrm{SF}
\end{aligned}
$$

$$
136.1 \mathrm{~m} \times 5 \mathrm{~m}=\frac{180.5 \mathrm{~m}^{2}}{\frac{700 \mathrm{~m}^{2}}{7 \times 10^{2} \mathrm{~m}^{2}}} \text { isf }
$$

